Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
Viruses ; 13(10)2021 09 25.
Artículo en Inglés | MEDLINE | ID: covidwho-1438748

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the agent of coronavirus disease 2019 (COVID-19), is responsible for the worst pandemic of the 21st century. Like all human coronaviruses, SARS-CoV-2 originated in a wildlife reservoir, most likely from bats. As SARS-CoV-2 has spread across the globe in humans, it has spilled over to infect a variety of non-human animal species in domestic, farm, and zoo settings. Additionally, a broad range of species, including one neotropical monkey, have proven to be susceptible to experimental infection with SARS-CoV-2. Together, these findings raise the specter of establishment of novel enzootic cycles of SARS-CoV-2. To assess the potential exposure of free-living non-human primates to SARS-CoV-2, we sampled 60 neotropical monkeys living in proximity to Manaus and São José do Rio Preto, two hotspots for COVID-19 in Brazil. Our molecular and serological tests detected no evidence of SAR-CoV-2 infection among these populations. While this result is reassuring, sustained surveillance efforts of wildlife living in close association with human populations is warranted, given the stochastic nature of spillover events and the enormous implications of SARS-CoV-2 spillover for human health.


Asunto(s)
COVID-19/epidemiología , Monitoreo Epidemiológico/veterinaria , Primates/virología , Alouatta/virología , Animales , Animales Salvajes/virología , Brasil/epidemiología , COVID-19/veterinaria , Callicebus/virología , Callithrix/virología , Pandemias , SARS-CoV-2/patogenicidad , Zoonosis Virales/transmisión
2.
PLoS Negl Trop Dis ; 14(8): e0008338, 2020 08.
Artículo en Inglés | MEDLINE | ID: covidwho-825835

RESUMEN

Pathogens originating from wildlife (zoonoses) pose a significant public health burden, comprising the majority of emerging infectious diseases. Efforts to control and prevent zoonotic disease have traditionally focused on animal-to-human transmission, or "spillover." However, in the modern era, increasing international mobility and commerce facilitate the spread of infected humans, nonhuman animals (hereafter animals), and their products worldwide, thereby increasing the risk that zoonoses will be introduced to new geographic areas. Imported zoonoses can potentially "spill back" to infect local wildlife-a danger magnified by urbanization and other anthropogenic pressures that increase contacts between human and wildlife populations. In this way, humans can function as vectors, dispersing zoonoses from their ancestral enzootic systems to establish reservoirs elsewhere in novel animal host populations. Once established, these enzootic cycles are largely unassailable by standard control measures and have the potential to feed human epidemics. Understanding when and why translocated zoonoses establish novel enzootic cycles requires disentangling ecologically complex and stochastic interactions between the zoonosis, the human population, and the natural ecosystem. In this Review, we address this challenge by delineating potential ecological mechanisms affecting each stage of enzootic establishment-wildlife exposure, enzootic infection, and persistence-applying existing ecological concepts from epidemiology, invasion biology, and population ecology. We ground our discussion in the neotropics, where four arthropod-borne viruses (arboviruses) of zoonotic origin-yellow fever, dengue, chikungunya, and Zika viruses-have separately been introduced into the human population. This paper is a step towards developing a framework for predicting and preventing novel enzootic cycles in the face of zoonotic translocations.


Asunto(s)
Infecciones por Arbovirus/epidemiología , Arbovirus , Zoonosis/epidemiología , Américas , Animales , Animales Salvajes/virología , Infecciones por Arbovirus/transmisión , Enfermedades Transmisibles Emergentes/epidemiología , Enfermedades Transmisibles Emergentes/transmisión , Enfermedades Transmisibles Emergentes/virología , Ecosistema , Humanos , Mosquitos Vectores , Clima Tropical , Zoonosis/transmisión , Zoonosis/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA